Spatial Processing and Characterization

Alexios Balatsoukas-Stimming, Pavle Belanovic, Konstantinos Alexandris, Raffael Hochreutener, **Andreas Burg**

> Telecommunications Circuits Laboratory (TCL) École Polytechnique Fédérale de Lausanne (EPFL)

> > CTW, May 26, 2014

Telecommunications Circuits Laboratory

What is ahead of us?... The capacity challenge

- Number of subscribers saturates at a penetration slightly above 100
- Usage changes: from voice to data

Example for growith of voice and data in % per year '08'09

Source: UMTS Forum Report 44 forecasts 2010-2020 report

Future networks will rely on small (femto) cells and WiFi offload

Strong need for flexible *short range links* with high capacity, *flexible spectrum usage*, and for efficient relaying.

 $\mbox{Half-duplex}\ (\mbox{HD})$ - all wireless communication systems use this

Half-duplex (HD) - all wireless communication systems use this

Time-division duplexing (TDD) Wasted time resources: switching interval

Half-duplex (HD) - all wireless communication systems use this

Time-division duplexing (TDD) Wasted time resources: switching interval

Frequency-division duplexing (FDD) Wasted frequency resources: guard bands

Half-duplex (HD) - all wireless communication systems use this

Time-division duplexing (TDD) Wasted time resources: switching interval

Frequency-division duplexing (FDD) Wasted frequency resources: guard bands

Up to twice the throughput! No additional transmit power or bandwidth No wasted time or frequency resources

Improved relaying

HD relay needs to alternate between reception and transmission

Improved relaying

HD relay needs to alternate between *reception* and *transmission*

FD relay provides continuous reception and transmission

How to compare HD and FD

Transmit power allocation is critical

- Higher transmit power in HD simply improves the quality of the link
- In FD, with higher transmit power we get:
 - improved forward link
 - higher self-interference
- Need to determine the best transmit power to use in FD

A look at the capacities

• Optimization problem:

$$\max_{\substack{P_1,P_2\\\text{s.t.}}} (1+\alpha) C_1$$

s.t.
$$C_2 = \alpha C_1$$
$$P_1 \le P/2$$
$$P_2 \le P/2$$

where:

$$C_1 = W \log_2 \left(1 + \frac{\delta P_2}{N_0 + \beta P_1} \right), \ C_2 = W \log_2 \left(1 + \frac{\delta P_1}{N_0 + \beta P_2} \right)$$

W: bandwidth, $\delta:$ path loss, $\beta:$ suppression, $P_1,P_2:$ transmit power

Comparing HD and FD: capacity

FD can provide better capacity than HD! More self-interference suppression (β) \Rightarrow higher FD gain

Comparing HD and FD: energy efficiency

FD can provide better efficiency than HD! More self-interference suppression (β) \Rightarrow higher FD gain

Outline

1 Introduction

- 2 Full-Duplex MIMO
- 3 Full-Duplex MIMO Testbed

4 Residual MIMO Self-interference Characterization

Digital construction of cancelation signal

A flexible (and well-suited for MIMO) way of achieving cancellation

- Cancellation signal constructed in the **digital domain**
- Uses an additional transmitter
- First built using WARP boards

(photo: A. Sahai et al./Rice University)

• Phase noise: limiting factor in FD radios (Sahai 2013, Syrjala 2014)

- A. Sahai, G. Patel, C. Dick, A. Sabharwal, "On the Impact of Phase Noise on Active Cancelation in Wireless Full-Duplex," IEEE Trans. Vehicular Commun., 2013
- [2] V. Syrjala, M. Valkama, L. Anttila, T. Riihonen, D. Korpi, "Analysis of Oscillator Phase-Noise Effects on Self-Interference Cancellation in Full-Duplex OFDM Radio Transceivers," IEEE Trans. Wireless Commun., 2014

- Phase noise: limiting factor in FD radios (Sahai 2013, Syrjala 2014)
- We are interested in the **relative** phase noise between Tx and Cx

- A. Sahai, G. Patel, C. Dick, A. Sabharwal, "On the Impact of Phase Noise on Active Cancelation in Wireless Full-Duplex," IEEE Trans. Vehicular Commun., 2013
- [2] V. Syrjala, M. Valkama, L. Anttila, T. Riihonen, D. Korpi, "Analysis of Oscillator Phase-Noise Effects on Self-Interference Cancellation in Full-Duplex OFDM Radio Transceivers," IEEE Trans. Wireless Commun., 2014

- Phase noise: limiting factor in FD radios (Sahai 2013, Syrjala 2014)
- We are interested in the **relative** phase noise between Tx and Cx **Solution:** share carrier between Cx and Tx \rightarrow similar phase noise

Shared reference

Shared carrier

- A. Sahai, G. Patel, C. Dick, A. Sabharwal, "On the Impact of Phase Noise on Active Cancelation in Wireless Full-Duplex," IEEE Trans. Vehicular Commun., 2013
- [2] V. Syrjala, M. Valkama, L. Anttila, T. Riihonen, D. Korpi, "Analysis of Oscillator Phase-Noise Effects on Self-Interference Cancellation in Full-Duplex OFDM Radio Transceivers," IEEE Trans. Wireless Commun., 2014

- Phase noise: limiting factor in FD radios (Sahai 2013, Syrjala 2014)
- We are interested in the **relative** phase noise between Tx and Cx **Solution:** share carrier between Cx and Tx \rightarrow similar phase noise

Shared reference

Shared carrier

The same approach can reduce the impact of sampling clock jitter

- A. Sahai, G. Patel, C. Dick, A. Sabharwal, "On the Impact of Phase Noise on Active Cancelation in Wireless Full-Duplex," IEEE Trans. Vehicular Commun., 2013
- [2] V. Syrjala, M. Valkama, L. Anttila, T. Riihonen, D. Korpi, "Analysis of Oscillator Phase-Noise Effects on Self-Interference Cancellation in Full-Duplex OFDM Radio Transceivers," IEEE Trans. Wireless Commun., 2014

- Passive analog: -18 dB
- Active analog
- Linear: -37 dB

- Passive analog: -18 dB
- Active analog
 - Linear: -37 dB
 - Red. phase noise: -11 dB

- Passive analog: -18 dB
- Active analog
- Linear: -37 dB
- Red. phase noise: -11 dB
- Total: -67 dB

Residual power: -63 dBm

- Passive analog: -18 dB
- Active analog
- Linear: -37 dB
- Red. phase noise: -11 dB
- Total: -67 dB

- No cancellation:
 - $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{H}_{\mathsf{t}}\mathbf{x}_{\mathsf{t}} + \mathbf{n}_{\mathsf{r}}$

- No cancellation:
 - $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{H}_{\mathsf{t}}\mathbf{x}_{\mathsf{t}} + \mathbf{n}_{\mathsf{r}}$
- Cancellation signal \mathbf{x}_{c} :

 $\mathbf{H}_{c}\mathbf{x}_{c}=-\mathbf{H}_{t}\mathbf{x}_{t}$

- No cancellation: \mathbf{H}_{t} $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{H}_t\mathbf{x}_t + \mathbf{n}_r$ Cancellation signal \mathbf{x}_{c} : \mathbf{n}_{r} • Нх→ v $\mathbf{H}_{c}\mathbf{x}_{c} = -\mathbf{H}_{t}\mathbf{x}_{t}$
- In practice, transmitted signals are affected by **non-idealities**: •

$$\mathbf{\tilde{x}}_t = \mathbf{x}_t + \mathbf{n}_t, \qquad \mathbf{\tilde{x}}_c = \mathbf{x}_c + \mathbf{n}_c$$

- No cancellation: $y = Hx + H_t x_t + n_r$ • Cancellation signal x_c : $H_c x_c = -H_t x_t$
- In practice, transmitted signals are affected by non-idealities:

$$\mathbf{\tilde{x}}_t = \mathbf{x}_t + \mathbf{n}_t, \qquad \mathbf{\tilde{x}}_c = \mathbf{x}_c + \mathbf{n}_c$$

Cancellation under transmit impairments:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{H}_{\mathsf{t}}\tilde{\mathbf{x}}_{\mathsf{t}} + \mathbf{H}_{\mathsf{c}}\tilde{\mathbf{x}}_{\mathsf{c}} + \mathbf{n}_{\mathsf{r}} = \mathbf{H}\mathbf{x} + \mathbf{H}_{\mathsf{t}}\mathbf{n}_{\mathsf{t}} + \mathbf{H}_{\mathsf{c}}\mathbf{n}_{\mathsf{c}} + \mathbf{n}_{\mathsf{r}}$

- No cancellation: $y = Hx + H_t x_t + n_r$ • Cancellation signal x_c : $H_c x_c = -H_t x_t$
- In practice, transmitted signals are affected by non-idealities:

$$\mathbf{\tilde{x}}_t = \mathbf{x}_t + \mathbf{n}_t, \qquad \mathbf{\tilde{x}}_c = \mathbf{x}_c + \mathbf{n}_c$$

Cancellation under transmit impairments:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{H}_{\mathsf{t}}\tilde{\mathbf{x}}_{\mathsf{t}} + \mathbf{H}_{\mathsf{c}}\tilde{\mathbf{x}}_{\mathsf{c}} + \mathbf{n}_{\mathsf{r}} = \mathbf{H}\mathbf{x} + \mathbf{H}_{\mathsf{t}}\mathbf{n}_{\mathsf{t}} + \mathbf{H}_{\mathsf{c}}\mathbf{n}_{\mathsf{c}} + \mathbf{n}_{\mathsf{r}}$

- We wish to characterize the effective noise \mathbf{n}_{eff} to:
 - $\textbf{0} \hspace{0.1 cm} \text{Better understand transmit impairments} \rightarrow \textbf{improved cancellation}$

- We wish to characterize the effective noise n_{eff} to:
 - **1** Better understand transmit impairments \rightarrow **improved cancellation**
 - **2** Assess whether \mathbf{n}_{eff} follows usual assumptions \rightarrow **better receivers**

- We wish to characterize the effective noise \mathbf{n}_{eff} to:
 - $\textbf{0} \text{ Better understand transmit impairments} \rightarrow \textbf{improved cancellation}$
 - ${\color{black} 2}$ Assess whether n_{eff} follows usual assumptions \rightarrow better receivers
- National Instruments PXIe-1082
 - 4× NI 5791R RF transceivers
 - Circulator-based anntena front-end

- We wish to characterize the effective noise \mathbf{n}_{eff} to:
 - $\textbf{0} \text{ Better understand transmit impairments} \rightarrow \textbf{improved cancellation}$
 - ${\color{black} 2}$ Assess whether n_{eff} follows usual assumptions \rightarrow better receivers
- National Instruments PXIe-1082
 - 4× NI 5791R RF transceivers
 - Circulator-based anntena front-end
- 1× Desktop PC
 - Runs Windows with LabVIEW

• 2.45 GHz carrier, 0 dBm transmit power

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $N_f = 100$ OFDM frames consisting of 40 OFDM symbols

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f} = 100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal x is absent (Rx at max. sensitivity)

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f} = 100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal x is absent (Rx at max. sensitivity)
- **Channel estimation** is performed with a "very long" *aperiodic* sequence to minimize error

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f} = 100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal x is absent (Rx at max. sensitivity)
- **Channel estimation** is performed with a "very long" *aperiodic* sequence to minimize error
- Residual noise recorded in $2\times N$ matrix ${\bf N}$

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f} = 100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal x is absent (Rx at max. sensitivity)
- **Channel estimation** is performed with a "very long" *aperiodic* sequence to minimize error
- Residual noise recorded in $2\times N$ matrix ${\bf N}$
- Statistical metrics used for effective noise characterization:

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f} = 100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal x is absent (Rx at max. sensitivity)
- **Channel estimation** is performed with a "very long" *aperiodic* sequence to minimize error
- Residual noise recorded in $2\times N$ matrix ${\bf N}$
- Statistical metrics used for effective noise characterization:
 Autocorrelation per receiver (to assess memory)

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f} = 100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal x is absent (Rx at max. sensitivity)
- **Channel estimation** is performed with a "very long" *aperiodic* sequence to minimize error
- Residual noise recorded in $2\times N$ matrix ${\bf N}$
- Statistical metrics used for effective noise characterization:
 - 1 Autocorrelation per receiver (to assess **memory**)
 - Pseudo-variance and correlation between real and imaginary parts (to assess circularity)

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f}=100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal x is absent (Rx at max. sensitivity)
- **Channel estimation** is performed with a "very long" *aperiodic* sequence to minimize error
- Residual noise recorded in $2\times N$ matrix ${\bf N}$
- Statistical metrics used for effective noise characterization:
 - 1 Autocorrelation per receiver (to assess memory)
 - Pseudo-variance and correlation between real and imaginary parts (to assess circularity)
 - **3** Histograms (to assess **distribution**)

- 2.45 GHz carrier, 0 dBm transmit power
- 15 cm antenna spacing
- 10 MHz bandwidth, 256 OFDM carriers, QPSK modulation
- $\mathbf{N_f} = 100$ OFDM frames consisting of 40 OFDM symbols
- Remote signal **x** is absent (Rx at max. sensitivity)
- **Channel estimation** is performed with a "very long" *aperiodic* sequence to minimize error
- Residual noise recorded in $2\times N$ matrix ${\bf N}$
- Statistical metrics used for effective noise characterization:
 - 1 Autocorrelation per receiver (to assess memory)
 - Pseudo-variance and correlation between real and imaginary parts (to assess circularity)
 - **8** Histograms (to assess **distribution**)
 - ④ Spatial covariance matrix (to assess spatial correlation)

Autocorrelation

- The autocorrelation of each element of \mathbf{n}_{eff} is estimated as

$$\hat{\mathbf{R}}_{i,j} = \begin{cases} \sum_{k=0}^{N-j-1} \mathbf{N}_{i,j+k} \mathbf{N}_{i,k}^*, & j \ge 0, \\ \hat{\mathbf{R}}_{i,-j}^*, & j < 0, \end{cases}$$

Autocorrelation

- The autocorrelation of each element of \mathbf{n}_{eff} is estimated as

- Time domain: \mathbf{n}_{eff} has non-negligible memory

Autocorrelation

The autocorrelation of each element of n_{eff} is estimated as

- Time domain: \mathbf{n}_{eff} has non-negligible memory
- Frequency domain: n_{eff} is practically memoryless

• For each chain *i*, the pseudo-variance is defined as:

$$\tau_i^2 \triangleq \mathbb{E}\left[\mathbf{n}_{\mathsf{eff},i}^2\right]$$

• For each chain *i*, the pseudo-variance is defined as:

$$\tau_i^2 \triangleq \mathbb{E}\left[\mathbf{n}_{\mathsf{eff},i}^2\right]$$

• A smaller pseudo-variance indicates a more circular random variable

• For each chain *i*, the pseudo-variance is defined as:

$$\tau_i^2 \triangleq \mathbb{E}\left[\mathbf{n}_{\mathsf{eff},i}^2\right]$$

- A smaller pseudo-variance indicates a more circular random variable
- We empirically estimate au_i^2 as

$$\hat{ au}_i^2 = rac{1}{N}\sum_{j=1}^N \mathbf{N}_{i,j}^2$$

• For each chain *i*, the pseudo-variance is defined as:

$$\tau_i^2 \triangleq \mathbb{E}\left[\mathbf{n}_{\mathsf{eff},i}^2\right]$$

- A smaller pseudo-variance indicates a more circular random variable
- We empirically estimate au_i^2 as

$$\hat{\tau}_i^2 = \frac{1}{N} \sum_{j=1}^N \mathbf{N}_{i,j}^2$$

- Time domain: $|\hat{\tau}_1^2| \approx 10^{-3}$
- Frequency domain: $|\hat{\tau}_1^2| \approx 10^{-5} \rightarrow$ more circular

• Joint histogram of $\mathfrak{R}(\mathbf{N}_{1,j})$ and $\mathfrak{I}(\mathbf{N}_{1,j})$

- Time domain: $\mathfrak{R}(\mathbf{N}_{1,j})$ and $\mathfrak{I}(\mathbf{N}_{1,j})$ are strongly correlated

- Joint histogram of $\mathfrak{R}(\mathbf{N}_{1,j})$ and $\mathfrak{I}(\mathbf{N}_{1,j})$

- Time domain: $\mathfrak{R}(\mathbf{N}_{1,j})$ and $\mathfrak{I}(\mathbf{N}_{1,j})$ are strongly correlated
- Freq. domain: $\mathfrak{R}(\mathbf{N}_{1,j})$ and $\mathfrak{I}(\mathbf{N}_{1,j})$ are practically uncorrelated

• Histogram of $\mathfrak{R}(\mathbf{N}_{1,j})$

• Time domain: Not Gaussian (Student's t-distribution is good fit)

• Histogram of $\mathfrak{R}(\mathbf{N}_{1,j})$

- Time domain: Not Gaussian (Student's t-distribution is good fit)
- Frequency domain: Gaussian (central limit theorem)

• Spatial covariance matrix: $\mathbf{K} \triangleq \mathbb{E} \left[\left(\mathbf{n}_{\mathsf{eff}} - \mathbb{E}[\mathbf{n}_{\mathsf{eff}}] \right) \left(\mathbf{n}_{\mathsf{eff}} - \mathbb{E}[\mathbf{n}_{\mathsf{eff}}] \right)^H \right]$

Measurements are specific to our setup. However, the variance of $\hat{\mathbf{K}}_{time}$ over time and $\hat{\mathbf{K}}_{freq}$ over the frequency tones is small compared to the magnitude of the entries.

- Spatial covariance matrix: $\mathbf{K} \triangleq \mathbb{E} \left[(\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}]) (\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}])^H \right]$
- We empirically estimate \mathbf{K} as $\hat{\mathbf{K}} = \frac{1}{N} \left(\mathbf{N} \mathbf{m} \right) \left(\mathbf{N} \mathbf{m} \right)^{H}$
- $\mathbf{m}_i = \frac{1}{N} \sum_{k=1}^{N} \mathbf{N}_{i,k}, \ i = 1, 2$, is the ML estimate of $\mathbb{E}[\mathbf{n}_{\mathsf{eff}}]$

Measurements are specific to our setup. However, the variance of $\hat{\mathbf{K}}_{time}$ over time and $\hat{\mathbf{K}}_{freq}$ over the frequency tones is small compared to the magnitude of the entries.

- Spatial covariance matrix: $\mathbf{K} \triangleq \mathbb{E}\left[\left(\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}] \right) \left(\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}] \right)^H \right]$
- We empirically estimate \mathbf{K} as $\hat{\mathbf{K}} = rac{1}{N} \left(\mathbf{N} \mathbf{m}
 ight) \left(\mathbf{N} \mathbf{m}
 ight)^{H}$
- $\mathbf{m}_i = \frac{1}{N} \sum_{k=1}^{N} \mathbf{N}_{i,k}, \ i = 1, 2$, is the ML estimate of $\mathbb{E}[\mathbf{n}_{\mathsf{eff}}]$
- Time domain:

$$\hat{\mathbf{K}}_{\mathsf{time}} = \begin{bmatrix} 0.0067 & -0.0013 - 0.0031i \\ -0.0013 + 0.0031i & 0.0053 \end{bmatrix}$$

Measurements are specific to our setup. However, the variance of $\hat{\mathbf{K}}_{time}$ over time and $\hat{\mathbf{K}}_{freq}$ over the frequency tones is small compared to the magnitude of the entries.

- Spatial covariance matrix: $\mathbf{K} \triangleq \mathbb{E}\left[\left(\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}]\right)\left(\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}]\right)^{H}\right]$
- We empirically estimate \mathbf{K} as $\hat{\mathbf{K}} = \frac{1}{N} \left(\mathbf{N} \mathbf{m} \right) \left(\mathbf{N} \mathbf{m} \right)^{H}$
- $\mathbf{m}_i = \frac{1}{N} \sum_{k=1}^{N} \mathbf{N}_{i,k}, \ i = 1, 2$, is the ML estimate of $\mathbb{E}[\mathbf{n}_{\mathsf{eff}}]$
- Time domain:

$$\hat{\mathbf{K}}_{\mathsf{time}} = \begin{bmatrix} 0.0067 & -0.0013 - 0.0031i \\ -0.0013 + 0.0031i & 0.0053 \end{bmatrix}$$

Frequency domain:

$$\hat{\mathbf{K}}_{\mathsf{freq}} = \begin{bmatrix} 0.0070 & -0.0013 - 0.0039i \\ -0.0013 + 0.0039i & 0.0057 \end{bmatrix}$$

Measurements are specific to our setup. However, the variance of $\hat{\mathbf{K}}_{\text{time}}$ over time and $\hat{\mathbf{K}}_{\text{freq}}$ over the frequency tones is small compared to the magnitude of the entries.

- Spatial covariance matrix: $\mathbf{K} \triangleq \mathbb{E}\left[\left(\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}]\right)\left(\mathbf{n}_{\mathsf{eff}} \mathbb{E}[\mathbf{n}_{\mathsf{eff}}]\right)^{H}\right]$
- We empirically estimate \mathbf{K} as $\hat{\mathbf{K}} = \frac{1}{N} \left(\mathbf{N} \mathbf{m} \right) \left(\mathbf{N} \mathbf{m} \right)^{H}$
- $\mathbf{m}_i = \frac{1}{N} \sum_{k=1}^{N} \mathbf{N}_{i,k}, \ i = 1, 2$, is the ML estimate of $\mathbb{E}[\mathbf{n}_{\mathsf{eff}}]$
- Time domain:

$$\hat{\mathbf{K}}_{\mathsf{time}} = \begin{bmatrix} 0.0067 & -0.0013 - 0.0031i \\ -0.0013 + 0.0031i & 0.0053 \end{bmatrix}$$

Frequency domain:

$$\hat{\mathbf{K}}_{\mathsf{freq}} = \begin{bmatrix} 0.0070 & -0.0013 - 0.0039i \\ -0.0013 + 0.0039i & 0.0057 \end{bmatrix}$$

• Spatial correlation remains in frequency domain

Measurements are specific to our setup. However, the variance of $\hat{\mathbf{K}}_{\text{time}}$ over time and $\hat{\mathbf{K}}_{\text{freq}}$ over the frequency tones is small compared to the magnitude of the entries.

• Time domain:

✗ Not memoryless

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian
- X Not circular symmetric

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian
- X Not circular symmetric
- ✗ Spatially colored

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian
- X Not circular symmetric
- ✗ Spatially colored

Time domain: •

- X Not memoryless
- X Not Gaussian
- X Not circular symmetric
- X Spatially colored

Frequency domain:

Memoryless

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian
- X Not circular symmetric
- X Spatially colored

Frequency domain:

- ✓ Memoryless
- 🗸 Gaussian

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian
- X Not circular symmetric
- X Spatially colored

• Frequency domain:

- ✓ Memoryless
- 🗸 Gaussian
- ✓ Circular symmetric

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian
- X Not circular symmetric
- X Spatially colored

• Frequency domain:

- ✓ Memoryless
- 🗸 Gaussian
- ✓ Circular symmetric
- X Spatially colored

• Time domain:

- ✗ Not memoryless
- 🗡 Not Gaussian
- X Not circular symmetric
- X Spatially colored

• Frequency domain:

- ✓ Memoryless
- 🗸 Gaussian
- ✓ Circular symmetric
- X Spatially colored

Traditional receiver assumptions **do not hold**

OFDM: Need to study and undo effects of colored noise

Impact of colored noise on ZF and ML receivers

• Zero-forcing (ZF) receiver: $\hat{\mathbf{x}}^{\mathsf{ZF}} = D(\mathbf{H}^{-1}\mathbf{y})$

Impact of colored noise on ZF and ML receivers

- Zero-forcing (ZF) receiver: $\hat{\mathbf{x}}^{\mathsf{ZF}} = D(\mathbf{H}^{-1}\mathbf{y})$
- Maximum-likelihood (ML) receiver: $\hat{\mathbf{x}}^{\mathsf{ML}} = \arg\min_{\mathbf{x} \in \mathcal{O}^{\mathcal{M}}} \|\mathbf{y} \mathbf{Hx}\|$

Impact of colored noise on ZF and ML receivers

- Zero-forcing (ZF) receiver: $\hat{\mathbf{x}}^{\mathsf{ZF}} = D(\mathbf{H}^{-1}\mathbf{y})$
- Maximum-likelihood (ML) receiver: $\hat{\mathbf{x}}^{ML} = \arg\min_{\mathbf{x} \in \mathcal{O}^M} \|\mathbf{y} \mathbf{H}\mathbf{x}\|$

Impact of colored noise on ZF and ML receivers

- Zero-forcing (ZF) receiver: $\hat{\mathbf{x}}^{\mathsf{ZF}} = D(\mathbf{H}^{-1}\mathbf{y})$
- Maximum-likelihood (ML) receiver: $\hat{\mathbf{x}}^{\mathsf{ML}} = \arg\min_{\mathbf{x} \in \mathcal{O}^{\mathcal{M}}} \|\mathbf{y} \mathbf{H}\mathbf{x}\|$

Colored noise $\rightarrow \sim 3 \text{ dB}$ worse performance

• Whitening filter: $\mathbf{W} = \mathbf{K}^{-1/2}$

- Whitening filter: $\mathbf{W} = \mathbf{K}^{-1/2}$
 - ZF receiver: $\hat{\mathbf{x}}^{ZF} = D(\mathbf{H}^{-1}\mathbf{W}^{-1}\mathbf{W}\mathbf{y}) = D(\mathbf{H}^{-1}\mathbf{y})$

- Whitening filter: $\mathbf{W} = \mathbf{K}^{-1/2}$
 - ZF receiver: $\hat{\mathbf{x}}^{ZF} = D(\mathbf{H}^{-1}\mathbf{W}^{-1}\mathbf{W}\mathbf{y}) = D(\mathbf{H}^{-1}\mathbf{y})$
 - ML receiver: $\hat{\mathbf{x}}^{ML} = \arg \min_{\mathbf{x} \in \mathcal{O}^M} \|\mathbf{W}\mathbf{y} \mathbf{W}\mathbf{H}\mathbf{x}\|$

ML: Noise whitening $\rightarrow \sim \! 1 \ dB$ reclaimed

Estimation of covariance matrix

- Whitening filter requires knowledge of covariance matrix ${\bf K}$

Estimation of covariance matrix

- Whitening filter requires knowledge of covariance matrix ${\bf K}$
- K can be estimated in training phase
 - \blacksquare We have observed that ${\bf K}$ does not vary significantly with low mobility

Estimation of covariance matrix

- Whitening filter requires knowledge of covariance matrix K
- K can be estimated in training phase
 - \blacksquare We have observed that ${\bf K}$ does not vary significantly with low mobility
- Since the setup is highly static, we can attempt to build a model to predict ${\bf K}$
 - No need to estimate K
 - Possibility of optimizing the setup to reduce coloring

• Two RF chains, antenna distance d

- Two RF chains, antenna distance d
- Cancellation channel:

$$\mathbf{H}_{\mathsf{c}} = \begin{bmatrix} h_{\mathsf{CX}_1,\mathsf{RX}_1} & 0\\ 0 & h_{\mathsf{CX}_2,\mathsf{RX}_2} \end{bmatrix}$$

- Two RF chains, antenna distance d
- Cancellation channel:

$$\mathbf{H}_{\mathsf{c}} = \begin{bmatrix} h_{\mathsf{C}\mathsf{X}_1,\mathsf{R}\mathsf{X}_1} & 0\\ 0 & h_{\mathsf{C}\mathsf{X}_2,\mathsf{R}\mathsf{X}_2} \end{bmatrix}$$

Self-interference channel

$$\mathbf{H}_{\mathsf{t}} = \begin{bmatrix} h_{\mathsf{TX}_1,\mathsf{RX}_1} & h_{\mathsf{TX}_1,\mathsf{RX}_2} \\ h_{\mathsf{TX}_1,\mathsf{RX}_2} & h_{\mathsf{TX}_2,\mathsf{RX}_2} \end{bmatrix}$$

- Two RF chains, antenna distance d
- Cancellation channel:

$$\mathbf{H}_{\mathsf{c}} = \begin{bmatrix} h_{\mathsf{C}\mathsf{X}_1,\mathsf{R}\mathsf{X}_1} & 0\\ 0 & h_{\mathsf{C}\mathsf{X}_2,\mathsf{R}\mathsf{X}_2} \end{bmatrix}$$

Self-interference channel

$$\mathbf{H}_{t} = \begin{bmatrix} h_{\mathsf{TX}_{1},\mathsf{RX}_{1}} & h_{\mathsf{TX}_{1},\mathsf{RX}_{2}} \\ h_{\mathsf{TX}_{1},\mathsf{RX}_{2}} & h_{\mathsf{TX}_{2},\mathsf{RX}_{2}} \end{bmatrix}$$

• Assumption: **Single frequency** f_c

- Assumption: Single frequency f_c
- Cancellation channel \mathbf{H}_{c} is constant \rightarrow modeled as constant gain α and constant phase ϕ_{α} :

$$\mathbf{H}_{\mathsf{c}} = \begin{bmatrix} \alpha e^{j\phi_{\alpha}} & 0\\ 0 & \alpha e^{j\phi_{\alpha}} \end{bmatrix}$$

- Assumption: Single frequency f_c
- Cancellation channel H_c is constant \rightarrow modeled as constant gain α and constant phase ϕ_{α} :

$$\mathbf{H}_{\mathsf{c}} = \begin{bmatrix} \alpha e^{j\phi_{\alpha}} & 0\\ 0 & \alpha e^{j\phi_{\alpha}} \end{bmatrix}$$

Self-interference channel from transmitter *i* to receiver *i* is constant
 → modeled as constant gain β and constant phase φ_β:

$$\mathbf{H}_{\mathsf{t}} = \begin{bmatrix} \beta e^{j\phi_{\beta}} & ? \\ ? & \beta e^{j\phi_{\beta}} \end{bmatrix}$$

- Self-interference channel from transmitter i to receiver $j \rightarrow$ wireless channel of distance d

- Self-interference channel from transmitter i to receiver $j \rightarrow$ wireless channel of distance d
- Can be modeled as gain $\gamma(d)$ and phase $\phi_{\gamma}(d)$:

$$\gamma(d) = \left(rac{\lambda}{4\pi d}
ight)^2 \qquad \qquad \phi_\gamma(d) = 2\pi rac{d}{\lambda}$$

- Self-interference channel from transmitter i to receiver $j \rightarrow$ wireless channel of distance d
- Can be modeled as gain $\gamma(d)$ and phase $\phi_{\gamma}(d)$:

$$\gamma(d) = \left(rac{\lambda}{4\pi d}
ight)^2 \qquad \qquad \phi_\gamma(d) = 2\pi rac{d}{\lambda}$$

• Model for self-interference channel:

$$\mathbf{H}_{\mathsf{t}} = egin{bmatrix} eta e^{j\phi_eta} & \gamma(d)e^{j\phi_\gamma(d)} \ \gamma(d)e^{j\phi_\gamma(d)} & eta e^{j\phi_eta} \end{bmatrix}$$

• Recall that: $\mathbf{n}_{eff} \triangleq \mathbf{H}_t \mathbf{n}_t + \mathbf{H}_c \mathbf{n}_c + \mathbf{n}_r$

- Recall that: $\mathbf{n}_{eff} \triangleq \mathbf{H}_{t}\mathbf{n}_{t} + \mathbf{H}_{c}\mathbf{n}_{c} + \mathbf{n}_{r}$
- Assume that n_t, n_c, n_r are **independent** and $K_{n_t} = K_{n_c} = I$ and $\mathbf{K}_{\mathbf{n}_{r}} = \sigma^{2} \mathbf{I}$

- Recall that: $\mathbf{n}_{eff} \triangleq \mathbf{H}_t \mathbf{n}_t + \mathbf{H}_c \mathbf{n}_c + \mathbf{n}_r$
- Assume that n_t,n_c,n_r are independent and $K_{n_t}=K_{n_c}=I$ and $K_{n_r}=\sigma^2 I$
- Then, we get

$$\mathbf{K}_{\mathbf{y}}(d) = \begin{bmatrix} A(d) & B(d) \\ B(d) & A(d) \end{bmatrix},$$

where

$$A(d) = \alpha^2 + \beta^2 + \gamma(d)^2 + \sigma^2$$

and

$$B(d) = \beta \gamma(d) \left(e^{j(\phi_{\gamma}(d) - \phi_{\beta})} + e^{-j(\phi_{\gamma}(d) - \phi_{\beta})} \right)$$

Avoiding colored noise

• **Optimal distance** *d*^{*} to minimize off-diagonal elements (i.e., minimize spatial correlation):

$$d^* = \arg\min_{d} \gamma(d) \left(e^{j(\phi_{\gamma}(d) - \phi_{\beta})} + e^{-j(\phi_{\gamma}(d) - \phi_{\beta})} \right)$$

Avoiding colored noise

• **Optimal distance** *d*^{*} to minimize off-diagonal elements (i.e., minimize spatial correlation):

$$d^* = \arg\min_d \gamma(d) \left(e^{j(\phi_\gamma(d) - \phi_\beta)} + e^{-j(\phi_\gamma(d) - \phi_\beta)} \right)$$

• Using Euler's formula, we get:

$$d^* = \left(\frac{2k+1}{4} - \frac{\phi_\beta}{2\pi}\right)\lambda, \quad k \in \mathbb{Z},$$

which gives $B(d^*) = 0!$

Avoiding colored noise

• **Optimal distance** *d*^{*} to minimize off-diagonal elements (i.e., minimize spatial correlation):

$$d^* = \arg\min_d \gamma(d) \left(e^{j(\phi_\gamma(d) - \phi_\beta)} + e^{-j(\phi_\gamma(d) - \phi_\beta)} \right)$$

• Using Euler's formula, we get:

$$d^* = \left(\frac{2k+1}{4} - \frac{\phi_\beta}{2\pi}\right)\lambda, \quad k \in \mathbb{Z},$$

which gives $\mathbf{B}(\mathbf{d}^*) = \mathbf{0}!$

Suitably chosen antenna spacing eliminates coloring

Carrier frequency: 2.40 GHz, signal bandwidth: 10 KHz

- Carrier frequency: 2.40 GHz, signal bandwidth: 10 KHz

- Carrier frequency: 2.40 GHz, signal bandwidth: 10 KHz

- Carrier frequency: 2.40 GHz, signal bandwidth: 10 KHz

Initial measurements indicate good agreement

Effective noise in time domain behaves very differently than • thermal noise

- Effective noise in time domain behaves very differently than • thermal noise
- Effective noise in **frequency domain** is more conventional •

- Effective noise in **time domain** behaves very differently than thermal noise
- Effective noise in **frequency domain** is more conventional
- Spatial correlation of effective noise affects conventional receivers

- Effective noise in **time domain** behaves very differently than thermal noise
- Effective noise in **frequency domain** is more conventional
- Spatial correlation of effective noise affects conventional receivers
- Noise whitening using the estimated covariance matrix reduces effect of correlation

- Effective noise in **time domain** behaves very differently than thermal noise
- Effective noise in **frequency domain** is more conventional
- Spatial correlation of effective noise affects conventional receivers
- Noise whitening using the estimated covariance matrix reduces effect of correlation
- Due to **static nature** of the setup correlation can be captured by a simple geometric model

- Effective noise in **time domain** behaves very differently than thermal noise
- Effective noise in **frequency domain** is more conventional
- Spatial correlation of effective noise affects conventional receivers
- Noise whitening using the estimated covariance matrix reduces effect of correlation
- Due to **static nature** of the setup correlation can be captured by a simple geometric model
- Antenna position can be **optimized** to reduce correlation (for narrowband signals)

